(4x)^2+(3x)^2=83

Simple and best practice solution for (4x)^2+(3x)^2=83 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x)^2+(3x)^2=83 equation:



(4x)^2+(3x)^2=83
We move all terms to the left:
(4x)^2+(3x)^2-(83)=0
We add all the numbers together, and all the variables
7x^2-83=0
a = 7; b = 0; c = -83;
Δ = b2-4ac
Δ = 02-4·7·(-83)
Δ = 2324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2324}=\sqrt{4*581}=\sqrt{4}*\sqrt{581}=2\sqrt{581}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{581}}{2*7}=\frac{0-2\sqrt{581}}{14} =-\frac{2\sqrt{581}}{14} =-\frac{\sqrt{581}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{581}}{2*7}=\frac{0+2\sqrt{581}}{14} =\frac{2\sqrt{581}}{14} =\frac{\sqrt{581}}{7} $

See similar equations:

| 3x+3x-1+4x+1=70 | | 2(x+1.25)=3. | | 25000(1.01^x)=25000+260x | | 3x(3x-1)(4x+1)=70 | | 2x-2/3(6x+9)-8=-24 | | 10x+20-5x=2x+11 | | 0.3(4-x)=-0.6(2x-1) | | 80+x+51=x+61 | | 8x+20=4x+80 | | 23+14=6x+1 | | 5(2x+3)=9x+9 | | x+(1/2x+4)=10 | | 48+11x-5=9x-3 | | 7=85x | | 4a-5=274 | | 0.3z=9.6 | | 25y+3=57 | | t4-2=1 | | 48+9x-3=11x-5 | | 10+22=3x-17 | | Y=8/7x+5 | | 414/x-10=-23 | | 13g-48=5g | | 10x−11=133−8x | | 8x⋅x−13x+29x=-10 | | 2x^2-6x+x=0 | | 133−8x=10x−11 | | 6g-1=4g+13 | | 3x+9+5x-9=180 | | (4x-29)=14 | | 8k+36−(7k−14)=−1/2 | | 10+1.50x=15+x |

Equations solver categories